
  

 

ICENIUM Hands On Lab 
 

Hybrid Mobile Application Development with Telerik’s Icenium & Kendo UI 
Mobile 

 



For Limited Circulation Only 

Version Information: 

Version No. Release Date Author(s) Reviewer(s) 

1.0 Jan 28th 2013 Dhananjay Kumar Lohith Nagaraj 

1.1 Feb 8th 2013 Abhishek Kant Anthony Abdullah 

    

    

 

  



For Limited Circulation Only 

Lab Manual for creating a Cross Platform 
Application using Icenium and KendoUI 

Mobile 
 

Contents 
Lab 1:  Creating Your First Cross-Platform Application using Kendo UI Mobile and Icenium...................... 4 

Objective ......................................................................................................................................... 4 

Conclusion ..................................................................................................................................... 10 

Lab 2:  Exploring Icenium features for Hybrid Application Development ................................................ 11 

Objective ....................................................................................................................................... 11 

Code Editor .................................................................................................................................... 11 

Certificate Management ................................................................................................................ 13 

Version Control .............................................................................................................................. 14 

Integration with github Repository ................................................................................................ 17 

Code signing ,Permissions and Publishing the application .............................................................. 24 

Conclusion ..................................................................................................................................... 25 

Lab 3:  Creating a Cross-Platform “Twitter Search” Application using Kendo UI Mobile and Icenium ...... 26 

Objective ....................................................................................................................................... 26 

Step 1: Create Project .................................................................................................................... 27 

Step 2: Create Layout of the Application ........................................................................................ 29 

Step 3: Create Settings View .......................................................................................................... 31 

Step 4: Create Tweets View ........................................................................................................... 32 

Step 5: Create Template to display tweets ..................................................................................... 32 

Step 6: Create Data Source to Fetch Tweets ................................................................................... 33 

Lab 4: Creating Netflix Movie Explorer ................................................................................................... 36 

Objective ....................................................................................................................................... 36 

Step 1: Create Project .................................................................................................................... 37 

Step 2: Create Layout of the Application ........................................................................................ 37 

Step 3: Create Views ...................................................................................................................... 38 



For Limited Circulation Only 

Setting layout of the application .................................................................................................... 38 

Setting transition style of the application ....................................................................................... 39 

Step 4: Create DataSource ............................................................................................................. 42 

Step 4: Create Template ................................................................................................................ 42 

Step 5: Create ListView .................................................................................................................. 44 

Run Application ............................................................................................................................. 44 

Create Movie Detail View with dynamic navigation ........................................................................ 45 

Running the Application ................................................................................................................. 49 

Conclusion ..................................................................................................................................... 50 

Lab 5:  Create APK package for Google Play using Icenium ..................................................................... 51 

 

  



For Limited Circulation Only 

Icenium is Telerik’s advancement of the traditional IDE.  Icenium is an Integrated Cloud Environment 

(ICE) that helps you easily build Hybrid Mobile Applications by combining the convenience of a local 

development environment with the power and flexibility of the cloud. If you are new to Hybrid Mobile 

Application, then it is suggested that you go through the following articles: 

 What is a Hybrid Mobile App?  

 As a Developer why should I worry about Hybrid Application Development? 

Icenium provides two different types of development environments. Following picture depicts the IDE 

options available: 

 

 

Lab 1:  Creating Your First Cross-Platform Application using Kendo UI 

Mobile and Icenium 
 

Objective  

This lab will help you to create first Cross Platform Application using Icenium  

In this lab we are going to use Icenium Graphite which is a desktop client to create our first Cross-

platform application. To start the development, launch Icenium Graphite. You will be asked to Login to 

Icenium. You can login using any of the following providers: 

 Telerik Account 

 Facebook Account 

 Google Account 

 Yahoo Account 

http://icenium.com/community/blog/icenium-team-blog/2012/06/14/what-is-a-hybrid-mobile-app-
http://debugmode.net/2012/09/17/as-a-developer-why-should-i-worry-about-hybrid-application-development/


For Limited Circulation Only 

 Microsoft Live Account 

 

Let us choose Telerik account for logging into Icenium. 

 

After successful login you will get a Project dashboard. On project dashboard you can perform following 
three tasks:  

 New - Create New Project 

 My Projects - Browse existing Projects  

 Clone - Clone a project  

The image below shows a list of existing projects when you select My Projects in the dashboard.  



For Limited Circulation Only 

 

To create new project click on New. Projects in Icenium can be based on three templates. They are: 

 Blank  
 Using jQuery  
 Using Kendo UI Mobile  



For Limited Circulation Only 

 

Let us go ahead and create a cross-platform device application using Kendo UI Mobile. 

Give a name to the project. You will notice that you will not be asked to select a location for saving the 
project. That is because, Icenium is a cloud-based IDE and it saves the project in Telerik cloud. Click Ok to 
create the application. 

Now that the project is created, let us explore the project structure. The structure of the project is 
depicted as a tree in the below image: 

 

If you look inside the file index.html, you will find code present already which serves as a reference 
code. As you can see in the below image, to create Hybrid application using Kendo UI Mobile, you need 
the following minimum references. 



For Limited Circulation Only 

 

There are three default files you will be working on in the project. 

 

However you are free to give any name to the above files. 

Let us go ahead and run the default application we just created.  

 

There are two ways you can run the application. You can run application either 

 On Device 

 In Simulator 

On running the app in simulator, you will get an application running in iPhone simulator. 



For Limited Circulation Only 

 

There are four simulator supported in Icenium. The simulators supported are shown in the below image: 

 



For Limited Circulation Only 

If you want to run the application in Android Simulator change the Device simulator and you are done 

 

Conclusion  

In this lab we created our first cross platform application using Icenium and Kendo UI Mobile.  

  



For Limited Circulation Only 

Lab 2:  Exploring Icenium features for Hybrid Application Development  
 

Objective  
In this lab we will explore following features of Icenium  

 

Code Editor  

Since we are building a hybrid mobile application, we will be writing a lot of HTML, JavaScript 

and CSS code. The code editor in Icenium is clean and an elegant editor. It allows you to write 

code without much distraction.  

 

 

“Just Code” – a code refactoring tool from Telerik, is integrated within the Code editor. Within 

the Code Editor, you can perform tasks like:  

1. Refactoring  

2. Navigation  

3. Code Commands 

Code Editor
Certificate 
creation

Code Sign and 
Publishing

Version 
Control

Github 
integration



For Limited Circulation Only 

 

If you select Code Commands, you can perform the following tasks:  

1. Formatting of Code  

2. Expand selection 

3. Duplicate a text  

4. Put a block comment  

 

As you can see, the code editor provides short cuts for all the tasks. So if you are a heavy 

keyboard user you have short cuts to perform most of the tasks the editor supports. 

In you select Navigation, you can perform tasks like  

1. Go To File  

2. Go To Member  

3. Go to Symbol  



For Limited Circulation Only 

 

 

Certificate Management  
One of the prime requirements for creating Android applications packages, is to have a certificate 

created. The package is usually a .apk file. Icenium allows you  to create and mange certificate right from 

the IDE. Below image shows the certificate management feature within Icenium. 

 

 

Icenium provides two options to create a certificate,  

1. Request for a certificate  

2. Create self-signed certificate  



For Limited Circulation Only 

 

Click on Ok to create Signed Certificate.  

 

Version Control 
Icenium provides complete version control solution for application development. You can work 

locally and perform the following tasks within Icenium  

1. Compare the changes between local and latest versions on server 

2. Commit changes  

3. Revert changes 

4. View history log in repository  

 



For Limited Circulation Only 

The Diff Tool allows you to compare changes, navigate from one change to another. The image 

below shows the Diff Tool in Icenium. 

 

 

You can view the  

1. History 

2. Change Sets 

3. Conflict etc. as shown in the above image, 

 



For Limited Circulation Only 

Icenium allows you to commit or revert changes. While committing you need to provide 

comment for that particular change. Committing code through Icenium is shown in the below 

image:  

 

 



For Limited Circulation Only 

  

Integration with github Repository 
Yes, you read it corectly. You can push and pull your project to and from your Github (or 

favourite Git repository) repository right from Icenium.  Icenium allows you to: 

1. Configure the repository  

2. Pull from the repository 

3. Push into the repository 

4. Invite the Collaboratores  

 



For Limited Circulation Only 

 

 

 

One of the best parts of Icenium is that you can right from the IDE  we can Invite Collaborators . Before 

pushing to GitHub we need to commit the changes to the respository. Commit comments will be 

displayed next in the GitHub respository comment.  When you create a project in Icenium, it saves that 

project in cloud and allows you to do version control.  Apart from cloud integration, Icenium allows you 

to push and pull your project within a GitHub Repository as well.  

 

 

 



For Limited Circulation Only 

 

To integrate projects from Icenium to a GitHub repository, first create a repository in GitHub. You can 

create that on the Github site by clicking on New Repository link button   

  

 

To create a new repository, you need to provide following information. I am symbolically providing 

information here to create a new repository.  

 

https://github.com/


For Limited Circulation Only 

 

 

Once repository is created on GitHub, you will get a URL to work with that repository.  

 

 

As of now, you have created a repository in GitHub. Now let us switch back to Icenium.  Right-click on 

the project, then select Version Control. In Version Control, select the option of Configure Remote 

Repository. 



For Limited Circulation Only 

 

 

In the Configure Remote Repository dialog, provide the URL of Github repository. 

   



For Limited Circulation Only 

Next, right-click on the project and select Version Control and select the option of Pull  

 

You will see that Icenium will start pulling the code from the remote repository.  

 

 

 

 

 

 

Now, to push the project to your GitHub repository, right click on the project and select Version Control 

then Push option.  



For Limited Circulation Only 

 

 

When Icenium starts to push your code to the remote repository, it will ask for version control 

authorization. Provide the appropriate credentials to proceed.  

 

 

 

 

 



For Limited Circulation Only 

On successful completion of the push, you will get a message at bottom which says “Push completed 

successfully”.   

  

So in this way you can integrate project from Icenium to Github repository.  

 

Code signing ,Permissions and Publishing the application 
 

Icenium, also allows you to sign the code, configure the permissions and set the icons of the application 

all from within the IDE.  

 

 

 In Icenium with a simple right-click on the project , you can publish the application.  



For Limited Circulation Only 

 

Conclusion  
 

In this lab you learned about different features of Icenium.  

  



For Limited Circulation Only 

Lab 3:  Creating a Cross-Platform “Twitter Search” Application using 

Kendo UI Mobile and Icenium 
 

Objective  

 

In this lab, we will create a Twitter Search Application using Kendo UI Mobile.   While building this 

application, you will learn about the following widgets of Kendo UI Mobile: 

 Kendo UI Mobile View 

 Kendo UI Mobile  ListView 

 Kendo UI DataSource  

 Kendo UI Template 

 Kendo UI ModalView 

 Working with HTML5 localstorage 

 

The Twitter Search Application which we will build in this lab will search tweets using Twitter API which 

returns results as JSON payload.   The finished application will look like something like below image: 



For Limited Circulation Only 

 

 

Step 1: Create Project  

 

Launch Icenium Graphite and create new project. Select Cross-platfrom Device Application (Kendo UI 

Mobile) project template.  

 



For Limited Circulation Only 

 

After creating project open index.html delete all the code from the body section except the script at the 

bottom of the page. After deleting the generated code, index.html should look like below,  

<!DOCTYPE html> 
<html> 
<head> 
    <title></title> 
    <meta charset="utf-8" /> 
    <script src="cordova.js"></script> 
    <script src="kendo/js/jquery.min.js"></script> 
    <script src="kendo/js/kendo.mobile.min.js"></script> 
    <script src="http://maps.google.com/maps/api/js?sensor=true"></script> 
    <script src="scripts/hello-world.js"></script> 
 
    <link href="kendo/styles/kendo.mobile.all.min.css" rel="stylesheet" /> 
    <link href="styles/main.css" rel="stylesheet" /> 
</head> 
<body> 
 
 
    <script> 
        var app = new kendo.mobile.Application(document.body, { transition: "slide", 
layout: "mobile-tabstrip" }); 
        </script> 
</body> 
</html> 

 



For Limited Circulation Only 

Next open hello-world.js JavaScript file and delete all the generated codes except the following lines of 

code:  

// JavaScript Document 
// Wait for PhoneGap to load 
document.addEventListener("deviceready", onDeviceReady, false); 
 
// PhoneGap is ready 
function onDeviceReady() { 
 
} 

 

By now, you have a project where you can start writing the code to finish the Twitter Search application.  

 

Step 2: Create Layout of the Application  

 

Application layout is a very essential part of any application. Layout defines how header and footer of 

the application should look like. Layout should be adaptive in nature and render according to the 

platform. To create layout, you have to follow following steps: 

1. Create a div 

2. Set data-role attribute of div as layout 

3. Set data-id of the div. This value will be used in mobile initialization. 

4. Create header of application in layout div using  <header> tag 

5. Create footer of application in layout div. To create footer create a div inside layout div and set 

data-role  attribute of div as footer 

You can create application layout with header and footer as show below:  

 

 



For Limited Circulation Only 

 

 

You can see that there are many important parts of layout. For example in header we create a 

navigation bar and within the navigation bar we have the back button and the title of the currently 

displayed view. Back button and view title are optional. It is purely on the requirement of the 

application that whether you want them as part of header or not. You can just have an image with logo 

of the application as layout header as well. In that case remove view title and back button and put an 

image as header of the application.  

In Footer we will create a TabStrip.  

 

In tabstrip there are two buttons. In next step you need to create two views to navigate to. At this point 

body of index.html should look like below:  

<body> 
    <div data-role="layout" data-id="tearchapplayout"> 
        <header data-role="header"> 
            <div data-role="navbar"> 
                <a data-role="backbutton" data-align="left">Back</a> 
                <span data-role="view-title"></span> 
            </div> 
        </header> 
 
        <div data-role="footer"> 
            <div data-role="tabstrip"> 
                <a href="#tweetsview" data-icon="home">Home</a> 
                <a href="#settingview" data-icon="settings">Settings</a> 
            </div> 
        </div> 
        
    </div> 
        <script> 
            var app = new kendo.mobile.Application(document.body, { transition: "slide",  
    layout: "tearchapplayout " }); 
        </script> 
    </body> 

 



For Limited Circulation Only 

 

 

Step 3: Create Settings View 

 

You can create a view by following the steps below: 

1. Create a div  

2. Set data-role attribute of div as view  

3. Set data-show attribute to a JavaScript function. This function will be called each time view is 

displayed in the application 

4. Set data-title attribute to set the title of the view.  

 

<div id="settingview" data-role="view"  data-title="Settings" data-show="readsettings"> 
            <input type="text" id="searchterm" class="searchterm" /> 
            <a data-role="button" id="savebutton" data-click="savesettings" /> 
        </div> 

 

On button click, text from the input box will be saved in local storage.  Twitter search will be performed 

on the text saved in local storage.  We are going to use HTML5 local storage API to save data locally. If 

you notice the data-click attribute of the button is set to javascript function savesettings.  savesettings 

function is defined as following .  

function savesettings() { 
    localStorage["searchterm"] = $('searchterm').val(); 
} 

Write this function in hello-world.js file. When user navigates to Settings view, search term which is 

saved in the local storage should be displayed to the user.  For that, we are setting data-show attribute 

of settings view to JavaScript function readsetting. Definition of the readsetting function is shown 

below.   

var termtosearch="#kendoui" ; 
function readsettings() { 
    if (localStorage.searchterm) { 
        $('#searchterm').val(localStorage["searchterm"]); 
        termtosearch = localStorage["searchterm"]; 
    } 
    else { 
 
        $('#searchterm').val("#kendoui"); 
        termtosearch = "#kendoui"; 
 
    } 
} 

In this function, we are checking that if there is any setting saved. If not then we are displaying default 

text “#kendoui”. 



For Limited Circulation Only 

 

Step 4: Create Tweets View 

 

Now you need to create Tweets view. Tweets will be fetched on basis of search term and displayed in 

this view. To display the tweets create a Kendo UI Mobile ListView inside Tweets view.  ListView is a 

KendoUI widgets used to show repeated data.  

We will create the Tweet view in the same way as we created the Settings view.  

<div id=" tweetsview " data-role="vieW" data-title="Tweets" data-show="showtweets"> 
             
</div> 

Inside Tweets view we need to create a ListView to display tweets. A ListView can be created by 

following the below steps: 

1. By setting data-role attribute of <ul> as ListView.  

2. For endless scroll set data-endlessScroll attribute to true 

3. Set data-style attribute of the ListView.  

 

<div id=" tweetsview " data-role="vieW" data-title="Tweets" data-show="showtweets"> 
            <ul data-role="listview" 
                id="tweetlistview" 
                data-endlessscroll="true" 
                data-style="inset"> 
            </ul> 
        </div> 

 

In the above code, we are performing the following operations: 

1. Creating Kendo UI Mobile view by setting data-role property of HTML div element as view 

2. Setting data-show attribute of view to JavaScript function showtweets 

3. Creating ListView inside mobile view. 

4. ListView is being created by setting data-role attribute of HTML <ul> element as listview 

 

Step 5: Create Template to display tweets 
 

Now you need to create a template. Template defines how data would be displayed in the ListView.  To 

create Kendo Template, You need to create a script with type text/x-kendo-template. Values from data 

source will be rendered by putting property name as following  

 



For Limited Circulation Only 

 

Let us create Tweet Template as following. 

 

   <script id="tweetTemplate" type="text/x-kendo-template">  
 <div class="tweets">             
 <img class="pullImage" src=#= profile_image_url# alt="#= from_user #" />#= text #         
   <div class="metadata"> 
   <a class="sublink" target="_blank" href="http://twitter.com/\\#!/#= 
from_user #/status/#= id_str #" rel="nofollow">#= kendo.toString(new 
Date(Date.parse(created_at)), "dd MMM HH:mm") #</a> 
   <a class="sublink" href="http://twitter.com/#= from_user #" 
rel="nofollow">#= from_user #</a> 
   </div> 
            </div> 
  </script> 

To make data rendering more immersive you need to set the style of data in CSS. Notice that in the 

above template we are setting a style class name to class attribute of <img> tag. These classes are 

defined in CSS. Open main.css and define following styles:  

.tweets { 
    padding: .5em .7em; 
    font-size: .8em; 
    line-height: 1.4em; 
    } 
.pullImage { 
 width: 64px; 
    height: 64px; 
    border-radius: 3px; 
    float: left; 
    margin-right: 10px; 
} 
.sublink { 
 font-size: .9em; 
    font-weight: normal; 
    display: inline-block; 
    padding: 3px 3px 0 0; 
    text-decoration: none; 
    opacity: .8; 
} 

 

Step 6: Create Data Source to Fetch Tweets 
 

After creating data template, you need to fetch tweets from Twitter based on a search term and create 

data source.  You need to create data source in showtweets JavaScript function.  

function showTweets(e) { 
 
 
    var lastID; 
    var tweets = new kendo.data.DataSource({ 



For Limited Circulation Only 

        serverPaging: true, 
        transport: { 
            read: { 
                url: "http://search.twitter.com/search.json",  
                dataType: "jsonp" // JSONP is required for cross-domain AJAX 
            }, 
            parameterMap: function (options) { 
                var parameters = { 
                    q: termtosearch, 
                    since_id: lastID //additional parameters sent to the remote service 
                } 
 
                return parameters; 
            } 
        }, 
        change: function () { 
            var item = this.view()[0]; 
 
            if (item) { 
                lastID = item.id_str; 
            } 
        }, 
        schema: { // describe the result format 
            data: "results" // the data which the data source will be bound to is in the 
"results" field 
        } 
    }); 
 
 
    $("#tweetlistview").kendoMobileListView({ 
        dataSource: tweets, 
        pullToRefresh: true, 
        appendOnRefresh: true, 
        template: $("#tweetTemplate").text() 
    }); 
 
} 

 

 

In above function we are performing the following task:  

1. Creating Kendo data source  

2. Implementing pull to refresh  

3. Binding data source to tweetlistview.  

 

Conclusion  

 

In this way you can create a Twitter Search Application.  In this lab we learnt about  

1. Kendo UI Mobile View 

2. Kendo UI Mobile ListView 



For Limited Circulation Only 

3. Template  

4. Data Source  

5. Consuming Service  

6. Working with local storage  

 

 

  



For Limited Circulation Only 

Lab 4: Creating Netflix Movie Explorer  
 

Objective  
In this lab you will create Netflix Movie Explorer Application. Idea is to fetch movies information from 

Netflix OData feed. Read more about Netflix OData API here  

The finished application at the end of this lab is shown as below: 

 

 

While creating this application, you will learn about  

 KendoUI Mobile ListView 

 KendoUI Mobile View 

 Navigation between views 

 Kendo DataSource and OData. 
 Kendo UI Template 

 

http://developer.netflix.com/docs/oData_Catalog


For Limited Circulation Only 

Step 1: Create Project  

 

Follow lab 3 for more details about creating project  

Launch Icenium Graphite and create new project. Select Cross-platfrom Device Application (Kendo UI 

Mobile) project template to create project.  

After creating project open index.html delete all the codes from the body section.  

Next, open hello-world.js JavaScript file and delete all the generated code. After deleting code hello-

world.js should look like below: 

// JavaScript Document 
// Wait for PhoneGap to load 
document.addEventListener("deviceready", onDeviceReady, false); 
// PhoneGap is ready 
function onDeviceReady() { 
 
} 

 

By now you have a project which is ready for you to code your new application. 

 

Step 2: Create Layout of the Application  

 

Follow lab 3 for more details about Layout of the Application  

In the layout, we have defined header and footer. Header contains the view title and shows the title of 
the current view. Layout also contains the footer.  Inside footer we have two buttons which are part of 
the tabstrip widget.  

<div data-role="layout" data-id="mobile-tabstrip"> 
                <header data-role="header"> 
                    <div data-role="navbar"> 
                        <span data-role="view-title"></span> 
                    </div> 
                </header> 
 
                <div data-role="footer"> 
                    <div data-role="tabstrip"> 
                        <a href="#moviesview" data-icon="home">Movies</a> 
                        <a href="#searchview" data-icon="search">Settings</a> 
                    </div> 
                </div> 
           </div> 

 

 



For Limited Circulation Only 

Step 3: Create Views  

 

Next you need to create Mobile Views. We need to create two views - moviesview and searchview. In 

moviesview we will display movies details from Netflix and some search settings in serachview. So let us 

go ahead and create two views with simple label. Views can be created as following  

<div data-role="view" id="moviesview" data-title="Movies"> 
   <h1>Hello Movies</h1> 
  </div> 
  <div data-role="view" id="searchview" data-title="Search"> 
   <h1>Hello Search</h1> 
</div> 

 

 

 

Setting layout of the application  

 

You can set layout of the application at two levels:  

1. At Application level  

2. At View level.  

There may be scenario where different view of your application requires different layout. Kendo UI 

mobile provides you option to set layout at the application level and also at the view level.  

Application level layout can be set as following. 

 

Now mobile-tabstrip is set as the layout of the application.  

 

View level layout can be set as following.  



For Limited Circulation Only 

 

So a layout is applied at the view level by setting the data-layout attribute of the view i9tself.  

If both application level and view level layout is set then always view level layout has more precedence 

than application level layout.  

 

Setting transition style of the application  

 

Kendo UI supports four transition styles, they are as follows.  

 

 

 

Default transition style is “slide”. You can apply transition style in three ways: 

1. At the application level  

2. At  the view level  

3. At the control level  

 

Tr
an

si
ti

o
n

 S
ty

le overlay

slide

zoom

fade



For Limited Circulation Only 

When set at application level same transition style will be applied to entire application. All views of the 

application will adhere to the same transition style.  At application level transition style can be set by 

providing value of transition property in Kendo mobile initialization.  

 

Other option to set transition style is at view level. On navigating to this view user will experience 

transition style set at the view.  

 

We can set transition style at control level as well.  In following case we are applying transition style to a 

kendo button. User will experience zoom transition behavior while navigating to view set in the href 

property of the keno button.  



For Limited Circulation Only 

 

 

If transition style is set at all the three levels then Control level has highest priority and application level 

has lowest priority.  

 

 

 

In this way you can apply different transition style to the application 

 

application 
level

view level

control 
level



For Limited Circulation Only 

Step 4: Create DataSource 

 

We will create data source from OData feed of Netflix.  We will fetch first 30 movies from Netflix and 

create data source. You can find Title of all the Movies from Netflix ODATA from below link. 

http://odata.netflix.com/Catalog/Titles 

We can create KendoUI data source as following, 

var movieTitleData; 
movieTitleData = new kendo.data.DataSource( 
 { 
     type: "odata", 
     endlessScroll: true, 
     batch: false, 
     transport: { 
         read: { 
             url: 
"http://odata.netflix.com/Catalog/Titles?$select=Id,ShortName,BoxArt&$top=100", 
             dataType: "jsonp", 
 
             data: { 
                 Accept: "application/json" 
             } 
         } 
     } 
 
 }); 

 

There are few points worth discussing about creating data source  

1. Data is fetched from OData feed of Netflix  

2. Since data source is reading OData feed hence type of data source is set as odata  

3. In transport attribute url is set as url of OData feed 

4. datatype attribute is set as jsonp to handle cross domain call.  

5. data attribute is set to accept json format of data  

  

Step 4: Create Template 

 

Now you need to create a template. Template defines how data would be displayed in the ListView.  To 

create Kendo Template, You need to create a script with type text/x-kendo-template. Values from data 

source will be rendered by putting property name as following  

 

http://odata.netflix.com/Catalog/Titles


For Limited Circulation Only 

 

Let us create Movies Template as following. 

  <script id="movieTemplate" type="text/x-kendo-template"> 
   <div> 
   <a href="\#moviedetailview?Id=#:data.Id#" 
   class="km-listview-link" 
   data-role="listview-link"> 
   <h4>#=data.ShortName.substring(0,15)#</h4> 
   <img src= #=data.BoxArt.MediumUrl# />              
   </a> 
   </div> 
</script> 

 

Some important point about movietemplate : 

1. There is an anchor element with href set to moviedetailview. We need anchor element with 

href to navigate to other view (detail view) on selecting of a particular movie item.  

2. While navigating id of the movie is being passed as query parameter. On basis of this movie id 

we will create data source for moviedetail view  

3. Movie image and first fifteen character of movie short name will be rendered in the listview.  

 

 

To make data rendering more immersive you need to set the style of data in CSS. You will notice that, in 

the above template  we are setting style for different element of moviesview. These classes are defined 

in CSS. Open main.css and define following styles:   

 

#moviesview 
 h4 { 
 display: inline-block; 
 font-size: 0.9em; 
 margin: 1em 0 .5em 1em; 
 } 
 
 #moviesview 
 img { 
 float: left; 
 width: 80px; 
 height: 80px; 
 margin: 0; 
 -webkit-box-shadow: 0 1px 3px #333; 
 box-shadow: 0 1px 3px #333; 
 -webkit-border-radius: 8px; 
 border-radius: 8px; 
 } 

 



For Limited Circulation Only 

 

Step 5: Create ListView 

 

As of now we have created datasource and template. Now we need to create ListView in the 

moviesview. ListView can be created as below 

 

  <div data-role="view" id="moviesview" 
            data-title="Movies"> 
            <ul id="movietitlelist" 
                data-source="movieTitleData" 
                data-endlessscroll="true" 
                data-template="movieTemplate" 
                data-role="listview" 
                data-style="inset"> 
            </ul> 
        </div> 

 

In ListView we are setting data-source attribute to movieTitleData. We created this data source in 

previous step. Next we are setting data-template to moviesTemplate created in previous step.  

 

 

Run Application 

 

Go ahead and run the application. You should be able to view 100 movies in ListView from Netflix OData 

feed.  



For Limited Circulation Only 

 

 

Create Movie Detail View with dynamic navigation  

 

On selecting an item user will be navigated to Movies Detail View. In this view details of selected movie 

will be displayed. 

 

    
 
 
 
 
 <div data-role="view"  
    id="movieDetailView"  
    data-title="Movie Detaiils" 
    data-show="showMovieDetails"> 
 
</div> 

 



For Limited Circulation Only 

Now we need to create template to display data.  In Template we will display name, average rating, 

release year, movie image and synopsis.  

 

<script id="movieDetailTemplate" type="text/x-kendo-template"> 
   <div>             
               
   <div class="sname">#=data.ShortName#</div>                 
   <div class="stitle">Rating : #=data.AverageRating#</div> 
   <div class="stitle">Release Year : #=data.ReleaseYear#</div> 
   <img class="sponsorthumbnail" src=#=data.BoxArt.MediumUrl#  /> </br> 
   <div class="sdetail">  
   #=data.Synopsis# 
   </div>           
   </div> 
           
  </script> 

 

To make data rendering more immersive you need to set some styles on the data in CSS. You will notice 

that, in the above template we are setting style of different class for different element. These classes are 

defined in CSS stylesheet. Open main.css and define the following styles:   

 

.sname 
{ 
 font-size: 30px; 
 font-weight: 100; 
    margin-left: 10pt; 
} 
.stitle 
{ 
 font-size: 12px; 
 font-weight: 100; 
    margin-left: 12pt; 
    margin-top:5pt; 
} 
.sponsorthumbnail 
{ 
    vertical-align: middle;     
    display: inline-block; 
    margin-top:5pt; 
 margin-left: 25pt; 
 margin-right: 6pt; 
    margin-bottom:10pt; 
    height: 150px; 
 width: 150px; 
    border-radius: 6px; 
 border-style: solid; 
 border-color: #999; 
 border-width: 1px; 
 background-size: 100% auto; 
 background-repeat: no-repeat; 
 background-position: center center; 



For Limited Circulation Only 

    background-color: white; 
} 
.sdetail 
{ 
    font-size: 12px; 
 font-weight: 100; 
    margin-left: 10pt; 
} 

 

As of now we have created view and template to show movie detail. Next we need to create data source 

and bind data to template in showMoviesDetails function. 

We can read the parameter passed to the view as shown below:  

 

 

We are converting the query parameter which was passed as integer to string format. Next you need to 

create a data source which will fetch this particular movie from Netflix OData feed.  

 

var moviedetailData = new kendo.data.DataSource( 
                { 
                    type: "odata", 
                    endlessScroll: true, 
                    batch: false, 
                    transport: { 
                        read: { 
                            url: 
"http://odata.netflix.com/Catalog/Titles?$select=Id,ShortName,BoxArt,Synopsis&$top=100", 
                            dataType: "jsonp", 
 
                            data: { 
                                Accept: "application/json" 
                            } 
                        } 
                    }, 
                    filter: { filters: [{ field: "Id", operator: "eq", value: query }] } 
 
                }); 

 



For Limited Circulation Only 

In data source you need to apply a filter to fetch detail of selected movie. Filter can be applied while 

creating Kendo data source. In above scenario filter is applied on Id field with eq i.e. equality operator.  

 

After creating data source you need to dynamically set data to the template. That can be done as 

following  

 
        var movieDetailTemplate = kendo.template($("#movieDetailTemplate").text()); 
 
        moviedetailData.fetch(function () { 
 
            var item = moviedetailData.at(0); 
            view.scrollerContent.html(movieDetailTemplate(item)); 
            kendo.mobile.init(view.content); 
        }); 

 

Eventually showMoviesDetails function will be as follows. This function will be called when user will 

select a movie to view the movie details.  

 

      function showMovieDetails(e) { 
            var query = e.view.params.Id.toString(); 
            var view = e.view; 
 
            var moviedetailData = new kendo.data.DataSource( 
                { 
                    type: "odata", 
                    endlessScroll: true, 
                    serverFiltering: true, 
                    transport: { 
                        read: { 
                            url: 
"http://odata.netflix.com/Catalog/Titles?$select=Id,ShortName,BoxArt,AverageRating,Releas
eYear,Synopsis&$top=100", 
                            dataType: "jsonp", 
 
                            data: { 
                                Accept: "application/json" 
                            } 
                        } 
                    }, 
                    filter: { filters: [{ field: "Id", operator: "eq", value: query }] } 
 
                }); 
 
            var movieDetailTemplate = kendo.template($("#movieDetailTemplate").text()); 
 
            moviedetailData.fetch(function () { 
 
                var item = moviedetailData.at(0); 



For Limited Circulation Only 

                view.scrollerContent.html(movieDetailTemplate(item)); 
                kendo.mobile.init(view.content); 
            }); 
 
        } 

 

Running the Application  

 

Go ahead and run the application. You should be able to view the movies and navigate to details of a 

selected movie.  

  

 

 

 



For Limited Circulation Only 

   

 

Conclusion  

In this lab we learnt about  

1. Working with Odata  

2. Dynamic navigation between views  

3. Working with template and ListView  

 

  



For Limited Circulation Only 

Lab 5:  Create APK package for Google Play using Icenium 
 

In this lab we will take a look at creating APK package for submission to Google Play using Icenium.  

Follow the below defined walkthrough to create APK package: 

To create package, right click on the project and select Publish. 

 

 

Next, in the publish dialog click on Google Play. You will get an error message that there is no certificate 

or Code Sign Identity found for Google Play Signing.  

 

 

To solve this issue click on the option in Icenium Graphite IDE.  



For Limited Circulation Only 

 

 In Users Option window select General tab and then Certificate Management option.  

 

 

In Certificate Management option you will get an option to create New Certificate. Click on Create New 

to create new certificate. You can either use  

1. Self-signed identity  

2. Request for the Certificate  

Let us go ahead and request for the Self-signed identity.  In Self-signed identity window you need to 

provide following vital information,  

 Country  

 Type of the self-signed identity. In this choose Google Play as option. Other option available is 

Generic. 

 Configure Start Date and End Date  

 



For Limited Circulation Only 

 

 After creating Self-signed identity you can find them in Cryptographic Identities section. Below you can 

see a list of three self-signed identity.  

 

 

After creating Self-signed identity right click on the project and select properties and in the properties 

windows select Android tab.  Here you can set various application properties for android platform. 

 



For Limited Circulation Only 

 

 

 

From the Code Signing Identity drop down, select any existing certificate to associate it with the 

application.  

 

You can set icons, application permissions for Google Play here. After associating self-signed identity, 

right click on the project and select publish option. You will get Application Validation Status message as 

OK.  



For Limited Circulation Only 

 

 

Next, click on the Build button to create the package. Icenium will build the application in cloud and ask 

you to give a name to the apk package and save it locally.  

 

 



For Limited Circulation Only 

In this case we saved APK with name tearchapp. Now you can submit the APK file to Google Play to 

publish application. 

  



For Limited Circulation Only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page has been left blank intentionally 


